Copied to
clipboard

G = C2xC52:C4order 200 = 23·52

Direct product of C2 and C52:C4

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C2xC52:C4, C10:2F5, C5:D5:4C4, C5:3(C2xF5), (C5xC10):4C4, C52:6(C2xC4), C5:D5.5C22, (C2xC5:D5).3C2, SmallGroup(200,48)

Series: Derived Chief Lower central Upper central

C1C52 — C2xC52:C4
C1C5C52C5:D5C52:C4 — C2xC52:C4
C52 — C2xC52:C4
C1C2

Generators and relations for C2xC52:C4
 G = < a,b,c,d | a2=b5=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b2, dcd-1=c3 >

Subgroups: 292 in 42 conjugacy classes, 14 normal (8 characteristic)
Quotients: C1, C2, C4, C22, C2xC4, F5, C2xF5, C52:C4, C2xC52:C4
25C2
25C2
2C5
2C5
25C22
25C4
25C4
2C10
2C10
5D5
5D5
5D5
5D5
10D5
10D5
10D5
10D5
25C2xC4
5D10
5D10
5F5
5F5
5F5
5F5
10D10
10D10
5C2xF5
5C2xF5

Character table of C2xC52:C4

 class 12A2B2C4A4B4C4D5A5B5C5D5E5F10A10B10C10D10E10F
 size 11252525252525444444444444
ρ111111111111111111111    trivial
ρ21-11-11-11-1111111-1-1-1-1-1-1    linear of order 2
ρ31111-1-1-1-1111111111111    linear of order 2
ρ41-11-1-11-11111111-1-1-1-1-1-1    linear of order 2
ρ51-1-11i-i-ii111111-1-1-1-1-1-1    linear of order 4
ρ611-1-1ii-i-i111111111111    linear of order 4
ρ71-1-11-iii-i111111-1-1-1-1-1-1    linear of order 4
ρ811-1-1-i-iii111111111111    linear of order 4
ρ9440000004-1-1-1-1-1-1-14-1-1-1    orthogonal lifted from F5
ρ104-40000004-1-1-1-1-111-4111    orthogonal lifted from C2xF5
ρ114-4000000-1-1-1-1-141-41111    orthogonal lifted from C2xF5
ρ1244000000-1-1-1-1-14-14-1-1-1-1    orthogonal lifted from F5
ρ134-4000000-1-1-53+5/23-5/2-1+5-11-5111+5-3-5/2-3+5/2    orthogonal faithful
ρ1444000000-13-5/2-1-5-1+53+5/2-13+5/2-1-13-5/2-1-5-1+5    orthogonal lifted from C52:C4
ρ1544000000-1-1-53+5/23-5/2-1+5-1-1+5-1-1-1-53+5/23-5/2    orthogonal lifted from C52:C4
ρ164-4000000-13+5/2-1+5-1-53-5/2-1-3+5/211-3-5/21-51+5    orthogonal faithful
ρ1744000000-13+5/2-1+5-1-53-5/2-13-5/2-1-13+5/2-1+5-1-5    orthogonal lifted from C52:C4
ρ184-4000000-1-1+53-5/23+5/2-1-5-11+5111-5-3+5/2-3-5/2    orthogonal faithful
ρ194-4000000-13-5/2-1-5-1+53+5/2-1-3-5/211-3+5/21+51-5    orthogonal faithful
ρ2044000000-1-1+53-5/23+5/2-1-5-1-1-5-1-1-1+53-5/23+5/2    orthogonal lifted from C52:C4

Permutation representations of C2xC52:C4
On 20 points - transitive group 20T49
Generators in S20
(1 6)(2 7)(3 8)(4 9)(5 10)(11 20)(12 16)(13 17)(14 18)(15 19)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 3 5 2 4)(6 8 10 7 9)(11 14 12 15 13)(16 19 17 20 18)
(1 13 6 17)(2 11 10 19)(3 14 9 16)(4 12 8 18)(5 15 7 20)

G:=sub<Sym(20)| (1,6)(2,7)(3,8)(4,9)(5,10)(11,20)(12,16)(13,17)(14,18)(15,19), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,3,5,2,4)(6,8,10,7,9)(11,14,12,15,13)(16,19,17,20,18), (1,13,6,17)(2,11,10,19)(3,14,9,16)(4,12,8,18)(5,15,7,20)>;

G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(11,20)(12,16)(13,17)(14,18)(15,19), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,3,5,2,4)(6,8,10,7,9)(11,14,12,15,13)(16,19,17,20,18), (1,13,6,17)(2,11,10,19)(3,14,9,16)(4,12,8,18)(5,15,7,20) );

G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(11,20),(12,16),(13,17),(14,18),(15,19)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,3,5,2,4),(6,8,10,7,9),(11,14,12,15,13),(16,19,17,20,18)], [(1,13,6,17),(2,11,10,19),(3,14,9,16),(4,12,8,18),(5,15,7,20)]])

G:=TransitiveGroup(20,49);

On 20 points - transitive group 20T52
Generators in S20
(1 8)(2 9)(3 10)(4 6)(5 7)(11 16)(12 17)(13 18)(14 19)(15 20)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 5 4 3 2)(6 10 9 8 7)(11 12 13 14 15)(16 17 18 19 20)
(1 16)(2 19 5 18)(3 17 4 20)(6 15 10 12)(7 13 9 14)(8 11)

G:=sub<Sym(20)| (1,8)(2,9)(3,10)(4,6)(5,7)(11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,5,4,3,2)(6,10,9,8,7)(11,12,13,14,15)(16,17,18,19,20), (1,16)(2,19,5,18)(3,17,4,20)(6,15,10,12)(7,13,9,14)(8,11)>;

G:=Group( (1,8)(2,9)(3,10)(4,6)(5,7)(11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,5,4,3,2)(6,10,9,8,7)(11,12,13,14,15)(16,17,18,19,20), (1,16)(2,19,5,18)(3,17,4,20)(6,15,10,12)(7,13,9,14)(8,11) );

G=PermutationGroup([[(1,8),(2,9),(3,10),(4,6),(5,7),(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,5,4,3,2),(6,10,9,8,7),(11,12,13,14,15),(16,17,18,19,20)], [(1,16),(2,19,5,18),(3,17,4,20),(6,15,10,12),(7,13,9,14),(8,11)]])

G:=TransitiveGroup(20,52);

C2xC52:C4 is a maximal subgroup of
C52:3C42  D10:F5  Dic5:F5  D52:C4  C2.D5wrC2  (C5xC10).Q8  C20:2F5  C102:4C4
C2xC52:C4 is a maximal quotient of
C20.11F5  C52:8M4(2)  C20:2F5  C52:14M4(2)  C102:4C4

Matrix representation of C2xC52:C4 in GL4(F41) generated by

40000
04000
00400
00040
,
0100
403400
0077
003440
,
403400
7700
003440
0010
,
00400
00040
40000
7100
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[0,40,0,0,1,34,0,0,0,0,7,34,0,0,7,40],[40,7,0,0,34,7,0,0,0,0,34,1,0,0,40,0],[0,0,40,7,0,0,0,1,40,0,0,0,0,40,0,0] >;

C2xC52:C4 in GAP, Magma, Sage, TeX

C_2\times C_5^2\rtimes C_4
% in TeX

G:=Group("C2xC5^2:C4");
// GroupNames label

G:=SmallGroup(200,48);
// by ID

G=gap.SmallGroup(200,48);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-5,20,483,173,2004,1014]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^5=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^2,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C2xC52:C4 in TeX
Character table of C2xC52:C4 in TeX

׿
x
:
Z
F
o
wr
Q
<